Genome-wide analysis of histone modifications in latently HIV-1 infected T cells
نویسندگان
چکیده
OBJECTIVES The transcriptional silencing of HIV type 1 (HIV-1) provirus in latently infected cells is a major hurdle on the pathway to HIV-1 elimination. The epigenetic mechanisms established by histone modifications may affect the transcriptional silencing of HIV-1 and viral latency. A systematic epigenome profiling could be applicable to develop new epigenetic diagnostic markers for detecting HIV-1 latency. DESIGN The HIV-1 latency cell lines (NCHA1, NCHA2 and ACH2] were compared with CD4⁺ T-cell line (A3.01). METHODS The histone modification profiles obtained from chromatin immunoprecipiation followed by sequencing (ChIP-Seq) for histone H3K4me3 and H3K9ac were systematically examined and differential gene expression patterns along with levels of histone modifications were used for network analysis. RESULTS The HIV-1 latency gave rise to downregulation of histone H3K4me3 and H3K9ac levels in 387 and 493 regions and upregulation in 451 and 962 sites, respectively. By network analysis, five gene clusters were associated with downregulated histone modifications and six gene clusters came up with upregulated histone modifications. Integration of gene expression with epigenetic information revealed that the cell cycle regulatory genes such as CDKN1A (p21) and cyclin D2 (CCND2) identified by differentially modified histones might play an important role in maintaining the HIV-1 latency. CONCLUSION The transcriptional regulation by epigenetic memory should play a key role in the evolution and maintenance of HIV-1 latency accompanied by modulation of signalling molecules in the host cells.
منابع مشابه
Selective Histonedeacetylase Inhibitor M344 Intervenes in HIV-1 Latency through Increasing Histone Acetylation and Activation of NF-kappaB
BACKGROUND Histone deacetylase (HDAC) inhibitors present an exciting new approach to activate HIV production from latently infected cells to potentially enhance elimination of these cells and achieve a cure. M344, a novel HDAC inhibitor, shows robust activity in a variety of cancer cells and relatively low toxicity compared to trichostatin A (TSA). However, little is known about the effects and...
متن کاملI-40: Male Genome Programming, Infertility and Cancer
Background: During male germ cells differentiation, genomewide re-organizations and highly specific programming of the male genome occur. These changes not only include the large-scale meiotic shuffling of genes, taking place in spermatocytes, but also a complete “re-packaging” of the male genome in post meiotic cells, leading to a highly compacted nucleo-protamine structure in the mature sperm...
متن کاملHistone deactylase inhibitor SAHA induces a synergistic HIV-1 reactivation by 12-O-tetradecanoylphorbol-13-acetate in latently infected cells.
OBJECTIVES Recent studies have reported that human immunodeficiency virus type 1 (HIV-1) proviruses are strongly suppressed in the unique epigenetic environments caused by chromatin modifications such as acetylation and methylation. Therefore, optimized therapeutic strategies directed against the virus reservoir using these epigenetic modifying agents (EMAs) should cure HIV infection. METHODS...
متن کاملA Novel Histone Deacetylase Inhibitor, AR-42, Reactivates HIV-1 from Chronically and Latently Infected CD4+ T-cells
Human immunodeficiency virus type 1 (HIV-1) latency is a major barrier to a cure of AIDS. Latently infected cells harbor an integrated HIV-1 genome but are not actively producing HIV-1. Histone deacetylase (HDAC) inhibitors, such as vorinostat (SAHA), have been shown to reactivate latent HIV-1. AR-42, a modified HDAC inhibitor, has demonstrated efficacy against malignant melanoma, meningioma, a...
متن کاملIn Vitro Reactivation of Replication-Competent and Infectious HIV-1 by Histone Deacetylase Inhibitors
UNLABELLED The existence of long-lived HIV-1-infected resting memory CD4 T cells is thought to be the primary obstacle to HIV-1 eradication. In the search for novel therapeutic approaches that may reverse HIV-1 latency, inhibitors of histone deacetylases (HDACis) have been tested to reactivate HIV-1 replication with the objective of rendering HIV-1-infected cells susceptible to elimination eith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 28 شماره
صفحات -
تاریخ انتشار 2014